1. Use the slope formula to find the slopes of lines joining these pair of points:

- a. (5, 1) (-4, -2)
- b. (-2, -1) (-4, -9)
- c. (-3, -2) (1, -4)
- d. (1, 2) (1, 6)
- e. (5, 1) (2, 1)

2. Find the slope of lines perpendicular to the line joining:

- a. (-1, 2) (-3, -6)
- b. (-3, -2) (-6, -1)
- c. (2, 3) (2, 5)
- d. (4, 2) (1, 2)
- e. (2, -6) (3, 4)

Find the equations of the lines through the given point and having the given slope:

- a. (3, 4) m = -1
- b. (1, 3) $m = \frac{1}{2}$
- c. (-2, -5) m = 0
- d. $(4, 7) \text{ m} = \frac{3}{4}$
- e. (1, -3) m = $-\frac{2}{3}$

- 4. Find the equations of the lines joining the following points:
 - a. (-5, 2) (-1, 1)
 - b. (-2, -5) (7, 4)
 - c. (-1, 0) (0, 6)
 - d. (-2, -2) (-2, 4)
 - e. (7, 5) (-3, 5)
- 5. Find the slope and y-intercept of the following lines:
 - a. y = 2x + 5
 - b. 2y = 3x 8
 - c. 4x + y = 7
 - d. 2x y = 4
 - e. y = .4
- 6. Determine the equation of the line satisfying the given conditions:
 - a. y-intercept 4 and parallel to the line x + y = 5.
 - b. through (1, 3) and parallel to the line 2x + 3y = 4.
 - c. through (-4, 3) and parallel to the line y = 5.
 - d. slope 3 and x-intercept 4.
 - e. through (-2, 1) and parallel to the line joining (1, 4) and (2, -3).
 - f. x-intercept 2, y-intercept 3.
 - g. parallel to the y-axis and through (3, -4).
 - h. through (2, 5) and perpendicular to the line 2x 3y = 7.
 - i. through (3, 2) and perpendicular to the line 3x 5y = 2.
 - j. x-intercept 3 and parallel to a line whose slope is 2.