Polynomials

Monomials: single term expression that can be a

- number
- variable
- a product of a number and one or more variables

e.g. 2, a, 3b,
$$4a^3b^2$$

Note: When there are numbers and variables, the number is referred to as the coefficient

Question: What are the coefficients of the following?

- (a) 3ab
- (b) 4c
- (c) z

Like-Terms: When there are identical exponents assigned to identical variables

e.g. (1) 2a and 4a

(2) $-3b^2$ and $7b^2$

What about....

(3) 5 and 7 ? Yes! $5a^0$ and $7a^0$ 5(1) 7(1)5

(4) $3a^3b^2$ and $9a^7b^2$ No! $3a^3b^2$ does <u>not</u> have the same exponents as $9a^7b^2$

(5) $8y^2z^3$ and $15y^2z^3$ Yes! $8y^2z^3$ and $15y^2z^3$ have the same variables with the same exponents associated with them

What about....is it a monomial?

(a) 5x + 6

No! There are 2 terms

Binomial: a polynomial with two terms e.g. $3a^2 + b$, 4a - c, 16z - 5c

Note: We can see there are two terms in the expression $(3a^2 + b)$ because there is an addition sign between the two terms.

Is the following a monomial or a binomial?

- a) $-3x \rightarrow \text{monomial}$
- b) $4ab \rightarrow monomial$
- c) $4b + c \rightarrow binomial$
- d) $7b^2 \rightarrow \text{monomial}$
- e) $c + 4d^2 \rightarrow binomial$

What about? $4a^2b + 2a^2 + 5b^2$ It is a trinomial

How many terms are there in the following statement? $4a^2b + 2a + 5b^2$

There are three monomials = trinomial

Trinomial: a polynomial with 3 terms

e.g.
$$4a^{2} + 2b + 4a^{2}b$$
$$6a^{3}b + 6b^{2} - 7c$$
$$7ca + 2b^{2} + 4$$

Question: Can we put any of them together?

 \rightarrow Can you add a^2 and a?

No, because they both have different exponents – they are two different terms.

$$\rightarrow 2a^3 + 6a^3$$

Yes! We can add them because they have the same base and exponent.

 \rightarrow Can you add a and b?

No, because they both have different bases

Always reduce the algebraic expression before deciding if it is a monomial, binomial or a trinomial.

How many terms are there in the following statement?

Once it is reduced we find there are only two terms $4a^2b + 7ab$ it is a binomial!

<u>Degree of a Polynomial:</u> is the highest value of the exponents in a polynomial once it has been reduced.

e.g. (1)
$$4a^5 + 2a^3 + 7a^2 \rightarrow \text{degree: } 5$$

(2) 7c
$$\rightarrow$$
 degree: 1 because $c = c^1$

(3)
$$\frac{6b^9 - 4b^3}{6b^2} \rightarrow \text{degree: 7 because } 6b^9 \div 6b^2 = b^7$$

When there is more than one variable we add the exponents in each term to find the highest degree.

e.g. (1)
$$4a^5b^3 + 2a^3b^4 + 7a^2$$

 $5+3$ $3+1$ 2
 8 4 2 \rightarrow degree: 8

(2)
$$12a^8 b^2 + 2a^4 b^5$$

 $8+2$ $4+5$
 10 9 \rightarrow degree: 10

(3)
$$\frac{6a^{7}b^{9}}{6a^{3}b^{2}} = a^{4}b^{7}$$

4+7
11 \rightarrow degree: 11