Pythagorean Theorem

Theorem: is a proposition that has been proven true.

Pythagorean Theorem: The theorem states that the squared sum of the two smaller sides of a right triangle is equal the square of the longest side of the triangle.

Hypotenuse: The longest side of a right triangle, it is the opposite of the 90° angle.

Formula: $a^2 + b^2 = c^2$

The formula can be written different ways:

$$c^2 = a^2 + b^2$$

$$a^2 = c^2 - b^2$$

$$b^2 = c^2 - a^2$$

$$c = \sqrt{a^2 + b^2}$$

$$a = \sqrt{c^2 - b^2}$$

$$b = \sqrt{c^2 - a^2}$$

From the theorem we can state that if we know the measure of any two sides of a right angle triangle, we can find the third side.

Example 1:

$$a^{2} + b^{2} = c^{2}$$

$$3^{2} + 4^{2} = x^{2}$$

$$9 + 16 = x^{2}$$

$$25 = x^{2}$$

$$\sqrt{25} = \sqrt{x^{2}}$$

$$5 = x$$

Example 2:

$$a^{2} + b^{2} = c^{2}$$

$$x^{2} + 5^{2} = 13^{2}$$

$$x^{2} + 25 = 169$$

$$x^{2} = 169 - 25$$

$$x^{2} = 144$$

$$\sqrt{x^{2}} = \sqrt{144}$$

$$x = 12$$

$$a^{2} + b^{2} = c^{2}$$

$$8^{2} + x^{2} = 10^{2}$$

$$64 + x^{2} = 100$$

$$x^{2} = 100 - 64$$

$$x^{2} = 36$$

$$\sqrt{x^{2}} = \sqrt{36}$$

$$x = 6$$

$$a^{2} + b^{2} = c^{2}$$

$$3^{2} + 7^{2} = x^{2}$$

$$9 + 49 = x^{2}$$

$$58 = x^{2}$$

$$\sqrt{58} = \sqrt{x^{2}}$$

$$c \approx 7.615$$

Example 5:

"a" and "b" must be equal be equal since it is an isosceles triangle

$$a^{2} + b^{2} = c^{2}$$

$$x^{2} + x^{2} = 10^{2}$$

$$2x^{2} = 100$$

$$\frac{2x^{2}}{2} = \frac{100}{2}$$

$$x^{2} = 50$$

$$\sqrt{x^{2}} = \sqrt{50}$$

$$x \approx 7.07$$

Pythagorean Triple: Consists of three positive integers that satisfy the Pythagorean Theorem. The integers are listed from lowest to highest making the last integer the hypotenuse.

Example:

• (3, 4, 5) and any multiple of: (6, 8, 10)

• (5, 12, 13) and any multiple of: (10, 24, 26)

$$(25, 60, 65) \dots$$