Rational and Irrational Decimals

NATURAL NUMBERS AND DECIMALS

Decimals that are rational numbers can be turned into either repeating or terminating decimals.

- 0.5 and 0.25 are terminating decimals.
- \bullet 0. $\overline{3}$, 0. $\overline{16}$, and 0. $\overline{142857}$ are repeating decimals with a pattern that never ends.

Decimals that are irrational numbers go beyond the point that we can calculate them.

- $\sqrt{7} = 2.645751311064590501615753639260425710259183082450180368 \dots$
- $\pi = 3.14159265358979323846264338327950288419716939937510582097 \dots$

Translate each fraction or square root into a decimal. Write each fraction from the fraction box beneath the appropriate heading. Find the irrational numbers and write them under the appropriate heading.

							Frac	ction	Вох						
$\frac{1}{2}$	$\frac{1}{3}$	√9	$\frac{1}{4}$	<u>1</u> 5	√25	$\frac{1}{6}$	$\frac{1}{7}$	π	<u>1</u> 8	1 9	1 10	$\sqrt{2}$	$\frac{2}{3}$	<u>3</u>	<u>2</u> 5
<u>5</u>	√5	2 7	<u>5</u>	√3	$\frac{3}{8}$	<u>2</u> 9	$\sqrt{6}$	7 9	3 10	$\sqrt{4}$	<u>3</u> 5	<u>6</u> 7	<u>5</u> 8	4 9	<u>8</u>

Terminating	Repeating
	21
	Irrational

Did you know? The philosopher Hippasus used geometric methods to prove that $\sqrt{2}$ is irrational. This so irritated the other mathematical philosophers that they threw him overboard. How's that for irrational?